RUHR-UNIVERSITÄT BOCHUM

Faculty of Civil and Environmental Engineering Urban Water Management and Environmental Engineering Prof. Dr.-Ing. habil. Marc Wichern

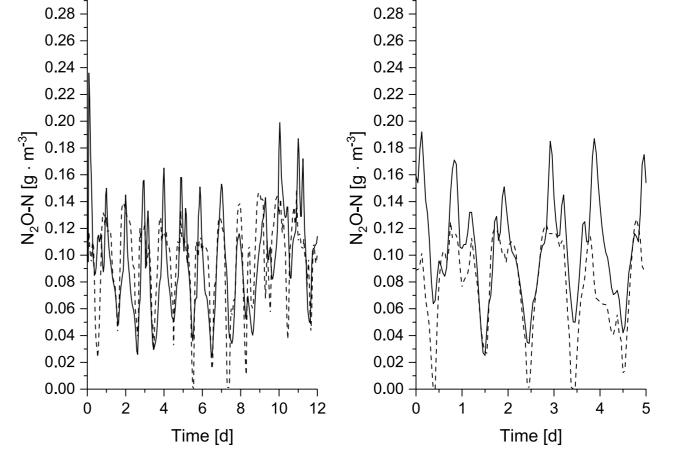
Development of an extended ASM3 model for predicting N₂O emissions in a full-scale wastewater treatment plant K. Blomberg, P. Kosse, A. Mikola, A. Kuokkanen, T. Fred, M. Heinonen, M. Mulas, M. Lübken, M. Wichern, R. Vahala

An Activated Sludge Model #3 (ASM3)-based pseudo-mechanistic model describing nitrous oxide (N_2O) production was created in this work in order to provide more insight into the dynamics of N_2O production, consumption and emissions at a full-scale wastewater treatment plant (WWTP). N_2O emissions at the studied WWTP are monitored plant-wide with FT-IR analyser. Additionally, the stripping of N_2O was

included by applying a K_La based approach, which has not been widely considered before. The objective was to extend the existing ASM3based model of the plant and assess how well the full-scale emissions could be predicted with the selected model. Validity and applicability were tested by comparison of simulation results with comprehensive online data.

The ASM3-based model in this study was created stepwise

0.30 _T


0.30 -

- Extension of the original nitrogen conversion processes in ASM3 into two-step nitrification and two-step denitrification reactions
- 2. Extension of denitrification into four-step denitrification
- 3. Implemetation of the hydroxylamine (NH₂OH) pathway
- 4. Implementation of N_2O stripping by applying a K_La based approach

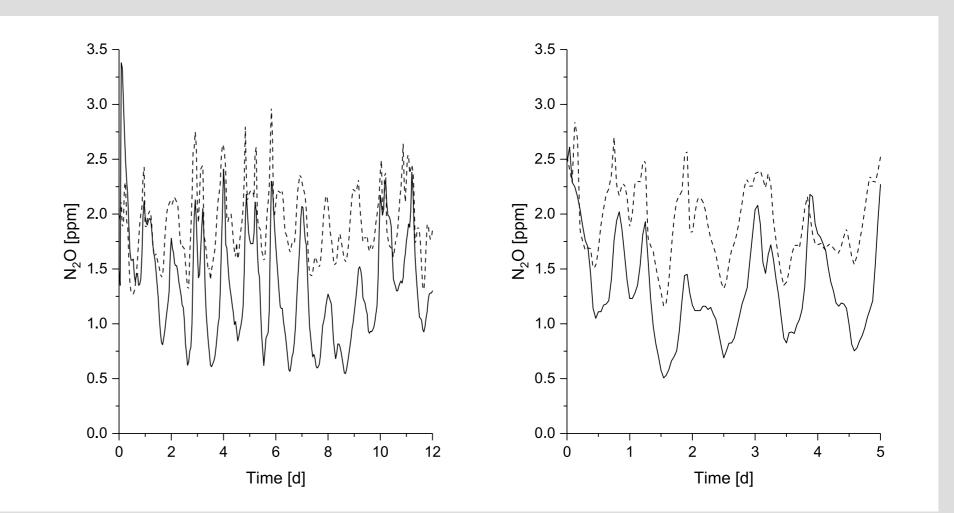

The model was calibrated and validated using FT-IR data from the Viikinmäki WWTP (Fig. 1), which is the largest treatment facility in the Nordic countries with its population equivalent of 1 100 000.

Fig. 1 Continuous emission monitoring at the bedrock wastewater treatment plant Helsinki Viikinmäki, Finland. Picture shows the denitrifying post-filtration unit. The underground area covers an area of 14 hectares, the above ground 3 hectares. Source: Sanna Alku, Helsinki Regions Environmental Services

Fig. 2 Modelled (dashed line) and measured (solid line) N_2O-N concentration in the liquid in the sixth continuously aerated zone during calibration (left) and validation (right).

Fig. 3 Modelled (dashed line) and measured (solid line) N_2O emissions during calibration (left) and validation (right).

The results show that an ASM3-based model can be successfully extended and applied in modelling N_2O production at a full-scale WWTP as the model was able to produce not only the measured N_2O production but also the comprehensive online monitoring data collected at the plant. This work also introduces the N_2O stripping into the process dynamics, which had been lacking from the previous suggested models.

Authority (HSY).

The fully extended ASM3-based model was able to capture the measured N₂O variation in both liquid and gaseous phases at the plant (Fig. 2 & Fig. 3). The average liquid phase N₂O concentration in the fourth aerated Zone was 0.04 g N₂O-N m⁻³ and 0.03 g N₂O-N m⁻³ and in the sixth aerated Zone 0.09 g N₂O-N m⁻³ and 0.11 g N₂O-N m⁻³ during the calibration and validation period, respectively.

PhD student, Ruhr-Universität Bochum M. Sc. Pascal Kosse | pascal.kosse@rub.de

Supervisors, Ruhr-Universität Bochum Prof. Dr.-Ing. habil. Marc Wichern Dr.-Ing. Manfred Lübken

Supervisor, University of Duisburg-Essen Prof. Dr. Torsten C. Schmidt

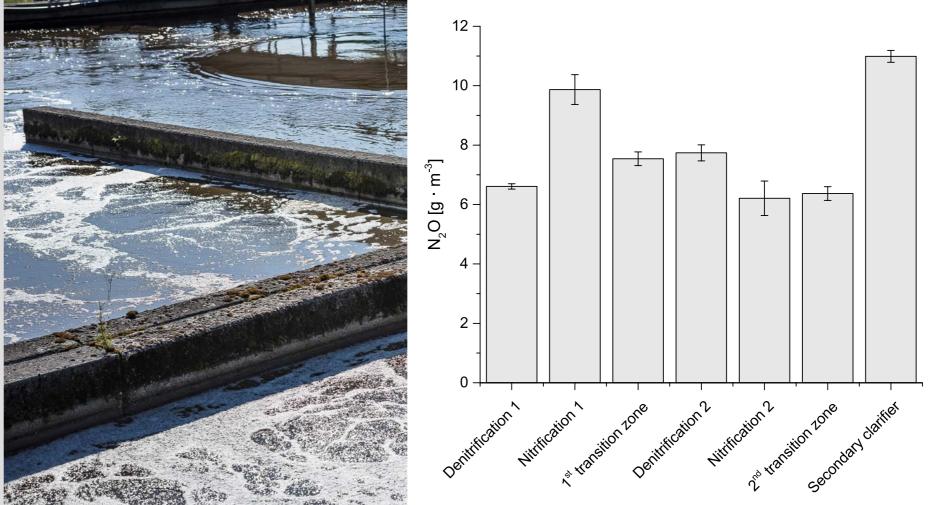
Practice partner, Emschergenossenschaft/Lippeverband Dr.-Ing. Ruben-Laurids-Lange

Ministry of Culture and Science of the German State of North Rhine-Westphalia

www.rub.de/siwawi

RUHR-UNIVERSITÄT BOCHUM

Faculty of Civil and Environmental Engineering Urban Water Management and Environmental Engineering Prof. Dr.-Ing. habil. Marc Wichern



Quantification of nitrous oxide in wastewater based on salt-induced stripping P. Kosse, M. Lübken, T. C. Schmidt, M. Wichern

Monitoring nitrous oxide (N_2O) emissions from wastewater treatment *plantshasattractedmuchattentioninrecentyearsdemandingaccurate* and rapid quantification methods. A salt-assisted methodology is proposed by which N_2O is chemically stripped out from wastewater and quantified by gas chromatography (GC-TCD) subsequently. Eight different inorganic salts have been evaluated, likewise the application

of ultrasound. By addition of sodium bromide (NaBr) the best recovery rate of about 98 % (= 1.14 ± 0.05 kg m⁻³) N₂O from a saturated stock solution (1.16 kg m⁻³, 295.85 K and 1 atm) was achieved. Practical applicability of the method has been demonstrated by applying NaBr to grab samples from a municipal wastewater treatment plant.

The solubility of N₂O in the liquid phase is determined by three factors: temperature, environmental pressure above the liquid phase and the salinity. Taking advantage on the latter one forms the basis for the salt-assisted stripping methodology. When N₂O becomes dissolved a hydration shell surrounding the gas molecules is formed. This effect is mainly driven by dipoledipole interactions between H_2O and N_2O molecules. Dipoledipole interactions are weak forces compared to ion-dipole ones, hence the addition of inorganic salts will cause N_2O to strip out. Once it has transferred from the liquid phase into the gas phase it can easily be quantified using gas chromatography.

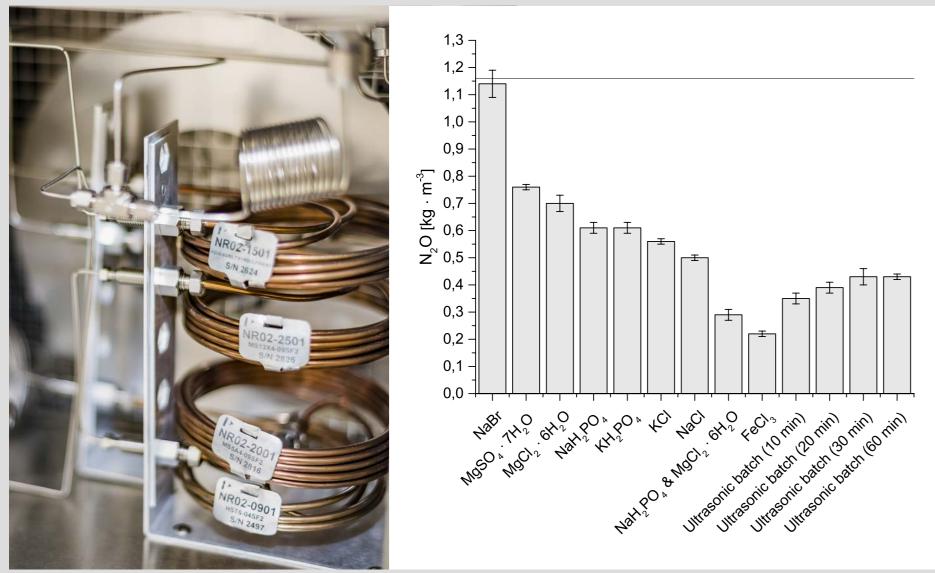


Fig. 1 N₂O recovery concentrations [kg m^{-3}] after applying inorganic salts (chemical approach) and an ultrasonic bath (physical approach) for stripping. The maximum possible recovery concentration was 1.16 kg m⁻³ based on water temperature. Picture: Rubin 2/2017, © Damian Gorczany.

From all of the tested inorganic salts NaBr showed the best stripping effect (Fig. 1). When applying NaBr, 1.14 ± 0.05 kg m⁻³ could be recovered, which is equal to 98 % of the total possible recover concentration that was 1.16 kg m⁻³ at 295.85 K and 1 atm. At WWTP level N₂O could be reliably measured by the proposed analytical procedure (Fig. 2). The highest N₂O concentration was found in the secondary clarifier with 10.99 \pm 0.20 g m⁻³. Besides, N₂O could be quantified in the activated sludge process with up to 9.87 ± 0.50 g m^{-3} yielding 7.75 g N₂O PE⁻¹ a⁻¹ specifically for the investigated WWTP.

Fig. 2 Results from validating the practical applicability of NaBr for N₂O stripping. Picture: Rubin 2/2017, © Damian Gorczany.

- The salting-out approach is a feasible, rapid and accurate method to quantify N_2O where it is actually produced – in the liquid phase.
- In combination with established gas chromatographic methods for N₂O quantification, it offers a feasible alternative to existing monitoring devices such as optical online sensors.
- Salt-induced stripping in combination with gas chromatography is an approach that can easily be applied to access liquid N_2O concentrations at wastewater treatment plants in dependency of hydraulic retention times (HRT), or at various treatment units at any point of time, as well as in dependency of diurnal and annual variations.
- Due to the complete stripping of N₂O themethod is not prone to matrix effects and the diurnal variation of wastewater. In contrast to similar, established approaches such as headspace analysis, the proposed method does not rely on air-water

partitioning coefficients that are currently not available for N_2O and wastewater.

It is likely that the current method will even work for other greenhouse gases of concern with lower solubilities than N_2O_1 , such as methane (CH_{Δ}) and for other matrices such as sewage sludge.

PhD student, Ruhr-Universität Bochum M. Sc. Pascal Kosse | pascal.kosse@rub.de

Supervisors, Ruhr-Universität Bochum Prof. Dr.-Ing. habil. Marc Wichern Dr.-Ing. Manfred Lübken

RUHR UNIVERSITÄT BOCHUM RUB Supervisor, University of Duisburg-Essen Prof. Dr. Torsten C. Schmidt

Practice partner, Emschergenossenschaft/Lippeverband Dr.-Ing. Ruben-Laurids-Lange

Ministry of Culture and Science of the German State of North Rhine-Westphalia

www.rub.de/siwawi